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I11. Linear Transformations

e Properties of random sequence properties obtained as
outputs to LTI systems

mean, cross-correlation between input/output

sequences
e Frequency domain analysis (output PSD for LTI
systems)
e Review of correlation matrix and eigendecomposition
properties
e Optimal filtering (Part 1)

- Orthogonality principle

- FIR, IIR Wiener filter implementations
eMatched filter (Part 2)

- Deterministic signal

- Random signal
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I11. Linear Transformations

< Goal: processing of stationary random sequences
using LTI systems

Recall: Time domain analysis for LTI systems

x(t) —»

h(t) (1)

y(t)=

y[n]=

4 Output random sequence properties

® Mean:

E{y[n]}=

® Input-output cross-correlation:

E{x[n]y*[n—f]} =
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® Output correlation:

E{y[n]y*[n-t]} =

® QOutput covariance:
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*Example: Given x[n] a RP with mean m,, and
covariance C (1)=c,25(1)

Compute the mean, correlation function, and
covariance function of the output y[n] to the LTI
system with impulse response h[n]=a"u[n], |a|<I.
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® Frequency domain analysis: (output PSD for LTI

systems)
Note: H —z[h ]—)H*(lj—z[h* ]
® S (2)=

@ For stable systems z = ¢/ is within ROC
=S, (ej”) =
S, ()=
S, (e")=
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< Recall: Properties of Correlation Matrices

Let R be defined as the correlation matrix R for the
stationary process x

(1) M(R)=0
(2) RFhas eigenvalues (M(R))*

(3) 1f R 1s a correlation matrix, then it has the
following eigendecomposition

R=QXQH > . diagonal eigenvalue matrix

Q : unitary eigenvector matrix

(4) The eigenvectors are | to each other
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+*» Matched Filter

» used to detect the presence of signals in additive
noise (radar, communications, etc...)

» Two cases are considered:
(1) Signal 1s deterministic

(2) Signal 1s random

x{n]

Signal duration P

P=n,—n,+1

Figure 5.6 Finite-length signal observed in additive noise.

* x[n] exists between [n,, n,J

* noisy signal y/n/ is defined as:
yin]=yln]+y,ln]
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« Assume x[n] deterministic (additive noise)

Goal: design the LTI filter
so that: 2
i
)

SNR = E{yn [np]

1s maximized

atn—np

® 1 =[h[0],— hlp—11%; x = [n(ny),— x(n,)]"

® y[n|=
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Example: s[n|=a", 0<n<M -1 |al<l

Find matched filter coefficients and maximized SNR.
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FIGURE 6.35 o
Signal and impulse responses of the optimum matched filter that maximizes

the SNR in the presence of additive color noise.

Comments: Consider the finite-duration deterministic signal s(n)
corrupted by additive noise v(n) with autocorrelation sequence r (k) =
o2plkl /(1-p?). We determine and plot the impulse response of an Mth-
order matched filter fora= 0.6, M = 8, 6>= 0.25, and (a) p = 0.1 and (b)
p=-0.8.
Note that the signal vector is s = [1 a a® ...a’] T and that the noise
correlation matrix R, is Toeplitz with first row [ry(0) r,(1) ...r,(7)].
The optimum matched filters are determined by h =R! s, and are shown
above. )
Note that for (1) p = 0.1 the matched filter looks like the signal because
the correlation between the samples of the interference is very small; that
18, the additive noise is close to white,

(2) p =-0.8 the correlation increases, and the shape of the
optimum filter differs more from the shape of the signal. However, as a
Orzesult of the increased noise corr 1102; gﬁ)F%;c;&%Foptimum SNR increases.
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(2) Assume x(n) is random sequence (additive noise)

i

d
SNR = =

E{yn("p)z}

* SNR is maximized when:

 White noise case:
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e Colored noise case
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Numerical Note:
You don’t have to compute the entire eigendecomposition to
get the maximum eigenvalue and its associated eigenvector

Proof:
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